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Improvement of the Davydov theory of bioenergy transport in protein molecular systems
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The Hamiltonian and the wave function in the Davydov theory have simultaneously been improved and
extended, based on some physical and biological grounds and on results from other models. The equations of
motion for the improved Davydov model with a quasicoherent two-quanta state and a new interaction term in
the Hamiltonian describe bioenergy transport along the molecular chains in protein molecules by a soliton
mechanism. Some elementary properties of the soliton, including the nonlinear coupling energy and greatly
increased binding energy of the soliton, are also given. The results obtained suggest that the model could be a
candidate for a bioenergy transport mechanism in protein molecules.

PACS number~s!: 87.17.Aa, 03.65.2w, 05.40.2a, 71.38.1i
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I. INTRODUCTION: THE PHYSICAL AND BIOLOGICAL
BACKGROUND TO THE PROBLEM

Many biological processes are associated with bioene
transport through protein molecules, where energy is
leased by the hydrolysis of adenosine triphosphate~ATP!.
This is an important problem in biology. Understanding t
mechanism of bioenergy transport in biomacromolecu
systems has been a long-standing problem that remain
great interest today. As an alternative to electronic mec
nisms@1#, one can assume that the energy is stored as vi
tional energy in theC50 stretching mode~amide-I! of a
polypeptide chain. Following Davydov’s idea@2#, one can
take into account the coupling between the amide-I vib
tional quantum~exciton! and the acoustic phonon~molecular
displacements! in the lattice. Through the coupling, nonlin
ear interaction appears in the motion of the vibratio
quanta, which could lead to a self-trapped state of the vib
tional quantum. The latter plus the deformational lattice
gether can travel over macroscopic distances along the
lecular chains, retaining the wave shape, energy, momen
and other properties of the quasiparticle. In this way,
bioenergy can be transported as a localized ‘‘wave pack
or soliton. This is just the Davydov model for the bioener
transport, which was first proposed by Davydov in the 197
@2#.

Davydov’s idea yields a compelling picture for th
mechanism of bioenergy transport in protein molecules
consequently has been the subject of a large numbe
works @3–23#. Problems related to the Davydov model, i
cluding the foundation and the accuracy of the theory,
quantum and classical properties, and the thermal stab
and lifetimes of the Davydov soliton, have been extensiv
studied by many scientists@3–23#. However, considerable
controversy has arisen in recent years over whether
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Davydov soliton is sufficiently stable in the region of bio
logical temperature to provide a viable explanation
bioenergy transport. Many numerical simulations@7–11#
have been based essentially on classical equations of mo
and are subject to the criticism that they are likely to yie
unreliable estimates for the stability of the soliton since
dynamics of the soliton is not being determined by t
Schrödinger equation@3#. The simulations based on theuD2&
state @2# „i.e., uD2&5Snwn(t)Bn

†u0&exexp$2(i/\)Sn@bn(t)Pn

2pn(t)un#%u0&ph, whereBn
†(Bn) is the creation~annihilation!

operator of an amide-I quantum excitation~exciton! in the
site n; un is the displacement operator of lattice oscillator
site n; Pn is its conjugate momentum operator;u0&ex and
u0&ph are the ground states of the exciton and phonon, res
tively; andwn(t), bn(t), andpn(t) are undetermined func
tions… generally agree that the stability of the soliton d
creases with increasing temperatures and that the solito
not sufficiently stable in the region of biological temperatu
Since the dynamical equations used in the simulations
not equivalent to the Schro¨dinger equation, the stability o
the soliton obtained by these numerical simulations is
available or unreliable. The simulations@9# based on the
uD1& state „i.e., uD1&5Snwn(t)Bn

†(t)exp$Sq@anq(t)aq
†

2anq* (t)aq#%0&, whereu0&5u0&exu0&ph,aq
†(aq) is the creation

~annihilation! operator of the lattice phonon, andanq(t) and
anq* (t) are some undetermined functions… with the thermal
treatment of Davydov@8#, where the equations of motion ar
derived from a thermally averaged Hamiltonian, yield t
surprising result that the stability of the soliton can be e
hanced with increasing temperature. Evidently, this conc
sion is not reliable because the Davydov procedure in wh
one constructs an equation of motion for an average dyna
cal state from an average Hamiltonian, corresponding to
Hamiltonian averaged over a thermal distribution of ph
nons, is inconsistent with standard concepts of quantu
statistical mechanics in which a density matrix must be u
to describe the system. Therefore, there exists no exact
quantum-mechanical treatment for the numerical simulat
6989 ©2000 The American Physical Society
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6990 PRE 62PANG XIAO-FENG
of the Davydov soliton. However, for the thermal equili
rium properties of the Davydov soliton, there is a quant
Monte Carlo simulation@13#. In the simulation, correlations
characteristic of solitonlike quasiparticles occur only at lo
temperatures, aboutT,10 K, for widely accepted paramete
values. This is consistent at a qualitative level with the res
of Cottinghamet al. @14#. The latter is a straightforward
quantum-mechanical perturbation calculation. The lifeti
of the Davydov soliton obtained by using this method is t
small~about 10212– 10213sec! to be useful in biological pro-
cesses. This shows clearly that the Davydov solution is n
true wave function of the systems. A thorough study in ter
of parameter values, different types of disorder, differ
thermalization schemes, different wave functions, and dif
ent associated dynamics leads to a very complicated pic
for the Davydov model@10–12#. These results do not com
pletely rule out the Davydov theory, however they do n
eliminate the possibility of another wave function and a m
sophisticated Hamiltonian of the system having a soli
with longer lifetimes and good thermal stability.

Indeed, the question of the lifetime of the soliton in pr
tein molecules is twofold. In Langevin dynamics, the pro
lem consists of uncontrolled effects arising from the se
classical approximation. In quantum treatments, the prob
has been the lack of an exact wave function for the solit
The exact wave function of the fully quantum Davydo
model has not been known up to now. Different wave fun
tions have been used to describe the states of the
quantum-mechanical systems@4,5#. Although some of these
wave functions lead to exact quantum states and exact q
tum dynamics in theJ50 state, they also share a proble
with the original Davydov wave function, namely that th
degree of approximation included whenJÞ0 is not known.
Therefore, it is necessary to reform Davydov’s wave fun
tion. Scientists had thought that the soliton with a multiqua
tum state (n>2), for example, the coherent state of Brow
et al. @4#, the quantum state of Kerret al. @12# and
Schweitzeret al. @14#, the two-quantum state of Cruzeiro
Hansson@10# and Förner@21#, and so on, would be thermall
stable in the region of biological temperature and could p
vide a realistic mechanism for bioenergy transport in prot
molecules. However, the assumption of the standard co
ent state is unsuitable or impossible for biological prot
molecules because there are innumerable particles in
state and one could not retain conservation of the numbe
particles of the system. The assumption of a multiquant
state (n.2) along with a coherent state is also inconsist
with the fact that the energy released in ATP hydroly
~about 0.43 eV! can excite only two quanta of amide-I vibra
tion. On the other hand, the numerical result of the tw
quantum model by Fo¨rner @21# reveals remarkable differ
ences from one-quantum dynamics, i.e., the soliton wit
two-quantum state is more stable than that with a o
quantum state.

Cruzeiro-Hansson@10# had thought that Fo¨rner’s two-
quantum state in the semiclassical case was not exact. Th
fore, he constructed a so-called exactly two-quantum stat
the semiclassical Davydov system as follows@10#:

Iw~ t !&5 (
n,m51

N

wnm~$ul%,$Pl%,t !Bn
†Bm

† u0&ex, ~1!
lt
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whereBn (Bn
†) is the annihilation~creation! operator for an

amide-I vibrational quantum~exciton!, u1 is the displace-
ment of the lattice molecules,P1 is its conjugate momenta
andu0&ex is the ground state of the exciton. He calculated
average probability distribution of the exciton per site, t
average displacement difference per site, and the therm
namics average of the variable,P5B1

†B12B2
†B2 , as a mea-

sure of localization of the exciton, versus quantityn
5Jw/x1

2 and lnb(b51/kBT) in the so-called two-quantum
state, Eq.~1!, wherex1 is a nonlinear coupling paramete
related to the interaction of the exciton-phonon in the Da
dov model. Their energies and stability are compared w
that of the one-quantum state. From the results of abo
thermal averages, he drew the conclusion that the wave fu
tion with a two-quantum state can lead to more stable sol
solutions than the wave function with a one-quantum sta
and that the usual Langevin dynamics, whereby the ther
lifetime of the Davydov soliton is estimated, must be view
as underestimating the soliton lifetime.

However, by checking carefully Eq.~1! @10#, we can find
that the Cruzeiro-Hansson wave function does not repre
exactly the two-quantum state. To find out how many qua
the state, Eq.~1!, indeed contains, we have to compute t
expectation value of the exciton number operator,N̂
5SnBn

†Bn , in this state, Eq.~1!, and sum over the sites, i.e
the exciton numbersN are

N5K wU(
n

Bn
†BnUwL

5 (
i j lmn

w im* w j l ex̂ 0uBiBmBn
†BnBj

†Bl
†u0&ex

5(
n j

~wn j* w jn1w jn* w jn!1(
nl

~wnl* wnl1w ln* wnl!54,

~2!

where we use the relations

@Bn ,Bj
†#5dn j , (

nl
uwnlu251, ~3!

ex̂ 0uBn
†u0&ex5ex̂ 0uBn

†Bnu0&ex5ex̂ 0uBn
†BmBl u0&ex5¯50.

~4!

Therefore, the state Eq.~1!, as it is put forward in@10#, deals,
in contradiction to the author’s statements, with four excito
~quanta! instead of two excitons. Obviously, it is not possib
to create the four excitons by the energy released in the A
hydrolysis~about 0.43 eV!. Thus the author’s wave function
is still not relevant for protein molecules, and his discuss
and conclusion are all unreliable and implausible in that
per @10#.

We think that the physical significance of the wave fun
tion, Eq. ~1!, is also unclear, or at least is very difficult t
understand. As far as the physical meaning of Eq.~1! is
concerned, it represents only a combinational state of sin
particle excitation with two quanta created at sitesn andm;
wnm($u1%,$P1%,t) is the probability amplitude of particle
occurring at the sitesn andm simultaneously. In general,n
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Þm andwnmÞwnwm in accordance with the author’s idea.
such a case it is very difficult to imagine the form of th
soliton formed by the mechanism of self-trapping of the t
quanta under the action of the nonlinear exciton-phonon
teraction, especially when the difference betweenn andm is
very large. Hansson has also not explained the physical
biological reasons and the meaning for the proposed
state. Therefore, we think that the Cruzeiro-Hansson re
sentation is still not an exact wave function suitable for p
tein molecules. Thus, the wave function of the systems
still an open problem today.

On the basis of the work of Cruzeiro-Hansson, Fo¨rner,
and others, we improve and extend the Davydov model
changing simultaneously the Hamiltonian and the wave fu
tion of the systems. We add new coupling interaction
tween the acoustic phonons and the amide-I vibratio
modes in the original Davydov Hamiltonian, and we repla
the one-quantum exciton state in Davydov’s wave funct
by a quasicoherent two-quantum state. Thus, the equatio
motion and the properties of the soliton occurring in the n
model are completely different from that in the Davyd
model. I believe that this model might resolve the cont
versy regarding the thermal stability and lifetime of the so
ton excited in protein molecules. In this paper, we derive
equation of motion of the improved model and give so
elementary properties of the new soliton that predict that
new model could be a candidate for a bioenergy trans
mechanism in protein molecules. The organization of t
paper is as follows. In Sec. II, the new model, including t
extended Hamiltonian and the wave function, is presen
The equations of motion and the new soliton solution in t
model are given in Sec. III. In Sec. IV, we discuss the pro
erties and thermal stability of the new soliton, and we pred
the possibility of the soliton being a suitable candidate
the mechanism of bioenergy transport in protein molecu
on the basis of results obtained in this paper.

II. CONSTRUCTION OF THE IMPROVED DAVYDOV
MODEL AND THE EXTENDED HAMILTONIAN

AND WAVE FUNCTION OF THE SYSTEMS

The results obtained by many scientists over the ye
show that the Davydov model, whether it be the wave fu
tion or the Hamiltonian, is indeed too simple, i.e., it does n
denote elementary properties of the collective excitations
curring in protein molecules, and many improvements to
have been unsuccessful, as mentioned above. What is
source of this problem? It is well known that the Davyd
theory on bioenergy transport was introduced into prot
molecules from an exciton-soliton model in generally on
dimensional molecular chains@24#. Although the molecular
structure of the alpha-helix protein is analogous to some
lecular crystals, for example acetanilide~ACN! ~in fact, both
are polypeptides; the alpha -helix protein molecule is
structure of three peptide channels, ACN is the structure
two peptide channels. If comparing the structure of alp
helix protein with ACN, we find that hydrogen-bonded pe
tide channels with the atomic structure along the longitudi
direction are the same except for the side group!, a lot of
properties and functions of the protein molecules are co
pletely different from that of the latter. The protein mo
-
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ecules are both a kind of soft condensed matter and bio-s
organization with active functions, for instance se
assembling and self-renovating. The physical concepts
coherence, order, collective effects, and mutual correla
are very important in bio-self-organization, including th
protein molecules when compared with generally molecu
systems@25,26#. Therefore, it is worth studying how we ca
physically describe these properties. We note that Davy
operation is not strictly correct. Therefore, we think that
basic reason for the failure of the Davydov model is just t
it ignores completely the above important properties of
protein molecules.

Let us consider the Davydov model with the prese
viewpoint. First, as far as the Davydov wave functions, bo
uD1& and uD2&, are concerned, they are not true solutions
the protein molecules. On the one hand, there is obviou
asymmetry in the Davydov wave function since the phono
part is a coherent state while the excitonic part is only
excitation state of a single particle. It is not reasonable t
the same nonlinear interaction generated by the coupling
tween the excitons and phonons produces different state
the phonon and exciton. Thus, Davydov’s wave functi
should be modified@23#, i.e., the excitonic part in it should
also be coherent or quasicoherent to represent the coh
feature of collective excitation in protein molecules. How
ever, the standard coherent@4# and large-n excitation states
@12# are not appropriate for the protein molecules due to
reasons mentioned above. Similarly, Fo¨rner’s and Cruzeiro-
Hansson’s two-quantum states do not fulfill the above
quest. In view of the above discussion, we propose the
lowing wave function of the protein molecular systems:

uF~ t !&5uw~ t !&ub~ t !&

5
1

l F I 1(
n

wn~ t !Bn
†1

I

2! S (n
wn~ t !Bn

†D 2G u0&ex

3expH 2
i

\ (
n

@bn~ t !Pn2pn~ t !un#J u0&ph,

~5!

whereBn
† andBn are boson creation and annihilation oper

tors for the exciton, anduO&ex and uO&ph are the ground
states of the exciton and phonon, respectively.un and Pn
are the displacement and momentum operators of the la
oscillator at site n, respectively. The wn(t), bn(t)
5^F(t)uunuF(t)& and pn(t)5^F(t)uPnuF(t)& are three
sets of unknown functions, andl is a normalization constant
We assume hereafter thatl51 for convenience of calcula
tion, except when explicitly mentioned.

A second problem arises for the Davydov Hamiltoni
@23#. The Davydov Hamiltonian takes into account the res
nant or dipole-dipole interaction of the neighboring amid
vibrational quanta in neighboring peptide groups with
electrical moment of about 3.5 D, but why do we not co
sider the changes of relative displacement of the neighbo
peptide groups arising from this interaction? Therefore, i
reasonable to add the new interaction termx2(un11

2un)(Bn11
† Bn1Bm

† Bn11) to Davydov’s Hamiltonian to rep-
resent correlations of the collective excitations and collect
motions in the protein molecules, as mentioned abo
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@22,23#. Although the dipole-dipole interaction is small a
compared with the energy of the amide-I vibrational qua
tum, the change of relative displacement of neighboring p
tide groups resulting from this interaction cannot be igno
due to the sensitive dependence of dipole-dipole interac
on the distance between amino acids in the protein m
ecules, which is a kind of soft condensed matter and bio-s
organization. Thus, we replace Davydov’s Hamiltonian b

H5Hex1Hph1H int

5(
n

@«0Bn
†Bn2J~Bn

†Bn111BnBn11
† !#

1(
n

S Pn
2

2M
1 1

2 w~un2un21!2D
1(

n
@x1~un112nn21!Bn

†Bn1x2~un112un!

3~Bn11
† Bn1Bn

†Bn11!#, ~6!

where«05\v051665 cm21 is the energy of the exciton~the
C50 streching mode!. The present nonlinear coupling con
stants arex1 andx2 . They represent the modulations of th
on-site energy and resonant~or dipole-dipole! interaction en-
ergy of the excitons caused by the molecular displaceme
respectively.M is the mass of an amino acid molcule andw
is the elasticity constant of the protein molecular chains.J is
the dipole-dipole interaction energy between neighbor
sites. The physical meanings of the other quantities in Eq.~6!
are the same as those in the above explanations.

The Hamiltonian and wave function shown in Eqs.~5!
and ~6! are different from Davydov’s. We add a new inte
action term,Snx2(un112un)(Bn11

† Bn1Bn
†Bn11), into the

original Davydov Hamiltonian. Thus the Hamiltonian no
has better symmetry and can also represent the feature
mutual correlations of the collective excitations and of c
lective motions in the protein molecules. We should po
out here that the different coupling between the relev
modes was also considered by Takenoet al. @22,27,28# and
Pang@23# in the Hamiltonian of the vibron-soliton model fo
one-dimensional oscillator-lattice and protein systems,
spectively, but the wave functions of the system they u
are different from Eq.~5!.

Obviously, the present wave function of the exciton in E
~5! is not an excitation state of a single particle, but rathe
coherent state, or more accurately, a quasicoherent state
see this, we can represent theuw(t)& by

uw~ t !&5
1

l F11(
n

wn~ t !Bn
†1

1

2! S (n
wn~ t !Bn

†D 2G u0&ex

;
1

l
expH(

n
w~ t !Bn

†J u0&ex

5
1

l
expH(

n
@wn~ t !Bn

†2wn* ~ t !Bn#J u0&ex. ~7!

The last representation in Eq.~7! is a standard coherent stat
More precisely, the new wave function retains only thr
-
p-
d
n
l-
lf-

ts,

g

of
-
t
t

-
d

.
a
To

e

terms of the expansion of a standard coherent state, w
mathematically is justified in the case of smallwn(t) @i.e.,
uwn(t)u!1#, which can be viewed as an effective truncati
of a standard coherent state. Therefore, we calluw(t)& a qua-
sicoherent state. However, it is not an eigenstate of the n
ber operator,N̂5SnBn

†Bn , since

N̂uw~ t !&5(
n

Bn
†Bnuw~ t !&

5H(
n

wn~ t !Bn
†1S (

n
wnwn~ t !Bn

†D 2J u0&ex

52uw~ t !&2S 21(
n

wn~ t !Bn
†D u0&ex. ~8!

Therefore, theuw(t)& represents indeed a superposition
multiquantum states. Concretely speaking, it is a cohe
superposition of the excitonic state with two quanta and
ground state of the exciton. However, in this state the nu
bers of quanta are determinate instead of innumerable
find out how many excitons this state contains, we have
compute the expectation value of the number operatorN̂ in
this state and sum over the sites. The average numbe
excitons for this state is

N5^w~ t !uN̂uw~ t !&

5(
n

^w~ t !uBn
†Bnuw~ t !&

5H(
n

uwn~ t !u21S (
n

uwn~ t !u2D S (
m

uwm~ t !u2D J
5S (

n
uwn~ t !u2D S 11(

m
uwm~ t !u2D 52, ~9!

where we utilize Eq.~4! and the following relations:

(
n

uwn~ t !u251, (
m

uwm~ t !u251, @Bn , Bm
† #5dnm .

~10!

Therefore, the new wave function is completely differe
from Davydov’s. The latter is an excitation state of a sing
particle with one quantum and an eigenstate of the num
operator, but the former is not. The new state is a quas
herent state. It contains only two excitons, which come fr
the second and third terms in Eq.~5!, in which each term
contributes only an exciton, but it is not an excitation state
two single particles. Hence, as far as the form and mean
of the new wave function are concerned, they are either t
quanta states proposed by Fo¨rner @21# and Cruzeiro-Hansson
@10# or a standard coherent state proposed by Brownet al.
@4,2# and Kerret al.’s @12# and Schweitzeret al.’s @14# mul-
tiquanta states. Therefore, the wave function, Eq.~5!, is new
for the protein molecular systems. It not only exhibits coh
ent features of collective excitations of the excitons and p
nons caused by the nonlinear interaction generated by
exciton-phonon interaction, which, thus, also makes
wave function of the states of the system symmetrical, bu



AT
-
s

g
b

an
q
m

e

-
ta

te
co

-

e

th
to

for
eld
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also agrees with the fact that the energy released in the
hydrolysis~about 0.43 eV! may only create two amide-I vi
brational quanta which, thus, can also make the number
excitons maintain conservation in the Hamiltonian, Eq.~6!.
Meanwhile, the new wave function has another advanta
i.e., the equation of motion of the soliton can also be o
tained from the Heisenberg equations of the creation
annihilation operators in quantum mechanics by using E
~5! and~6!, but the wave function of the states of the syste
in other models, including the one-quantum state@2# and the
two-quanta state@10–12# could not. Therefore, the abov
Hamitonian and wave function, Eqs.~5! and~6!, are reason-
able and appropriate to the protein molecules.

III. THE EQUATIONS OF MOTION AND THE SOLITON
SOLUTION

We now derive the equations of motion from the im
proved Davydov model. First of all, we give the interpre
tion of bn(t) andpn(t) in Eq. ~5!. We know that the phonon
part of the new wave function in Eq.~5! depending on the
displacement and momentum operators is a coherent sta
the normal model creation and annihilation operators. A
herent state for the mode with wave vectorq is @2,12,23,25#

ua~ t !&5expS (
q

@aq~ t !aq
†2aq* ~ t !aq# D u0&ph. ~11!

Utilizing the standard transformations

un5(
q

F \

2NMvq
G1/2

eiqnr0~a2q
† 1aq!,

~12!

Pn5 i(
q

FM\vq

2N G1/2

eiqnr0~a2q
† 2aq!,

we can get@12,23# ua(t)&5ub(t)&, where ub(t)& is in Eq.
~5!, and vq52(w/M )1/2sin(r0q/2), r 0 is the distance be
tween neighboring amino acid molecules, andaq (aq

†) is the
annihilation ~creation! operator of the phonon with wav
vectorq, where

^a~ t !uaqua~ t !&5aq~ t !

5S Mvq

2\ D 1/2

bq~ t !1 i S 1

2M\vq
D 1/2

pq~ t !,

bq~ t !5
1

AN
(

n
e2 iqnr0bn~ t !, ~13!

pq~ t !5
1

AN
(

n
e2 iqnr0pn~ t !,

^F~ t !uunuF~ t !&5bn~ t !, ^F~ t !uPnuF~ t !&5pn~ t !.

Utilizing again the above results and the formulas of
expectation values of the Heisenberg equations of opera
un andPn , in the stateuF(t)&,
P

of

e,
-
d
s.

-

of
-

e
rs,

i\
]

]t
^F~ t !uunuF~ t !&5^F~ t !u@un ,H#uF~ t !&,

~14!

i\
]

]t
^F~ t !uPnuF~ t !&5^F~ t !u@Pn ,H#uF~ t !&,

we can obtain the equation of motion for thebn(t) as

M b̈n~ t !5w@bn11~ t !22bn~ t !1bn21~ t !#12x1@ uwn11~ t !u2

2uwn21~ t !u2#12x2$wn* ~ t !@wn11~ t !2wn21~ t !#

1wn~ t !@wn11* ~ t !2wn21* ~ t !#%. ~15!

From Eq.~15! we see that the presence of two quanta
the oscillators increases the driving force on the phonon fi
by that factor when compared with the Davydov theory.

We now derive the equation of motion for thew(t). A
basic assumption in the derivation is thatuF(t)& in Eq. ~5! is
a solution of the time-dependent Schro¨dinger equation
@12,23#:

i\
]

]t
uF~ t !&5HuF~ t !&. ~16!

The left-hand side of Eq.~16! has@12,23#

i\
]

]t
uF~ t !&5H i\S (

n
ẇn~ t !Bn

†

1(
n

ẇn~ t !wn~ t !Bn
†Bn

†D u0&exJ ub~ t !&

1uw~ t !&H(
n

$ḃn~ t !Pn2ṗn~ t !un

1 1
2 @bn~ t !ṗn~ t !2ḃn~ t !pn~ t !#%ub~ t !&J .

~17!

Now left-multiplying the both sides of Eq.~16! by
^F(t)u, we can yield the left-hand side of Eq.~16! to be

i\^F~ t !u
]

]t
uF~ t !&

5 i\(
n

wn* ~ t !ẇn~ t !S (
m

wm* ~ t !wm~ t !11D
1 5

4 (
n

@ḃ~ t !pn~ t !2ṗ~ t !bn~ t !#(
n

uwn~ t !u2.

~18!

Similarly, for the right-hand side of Eq.~16! we have@12,23#
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^F~ t !u~Hex1Hph1H int!uF~ t !&

5H(
n

$«0uwn~ t !u22Jwn* ~ t !@wn11~ t !1wn21~ t !#%

3S 11(
m

uwm~ t !u2D 1H(
n

$x1@bn11~ t !

2bn-1~ t !#uwn~ t !u21x2@bn11~ t !2bn~ t !#

3w* ~ t !@wn11~ t !2wn21~ t !#%J S 11(
m

uwm~ t !u2D
1 5

2 W~ t !(
n

uwn~ t !u2, ~19!
where

W~ t !5^b~ t !uHphub~ t !&

5(
n

S 1

2M
pn

2~ t !1 1
2 w@bn~ t !2bn21~ t !#2D

1(
q

1
2 \vq ~20!

and utilizing Eqs.~4! and ~8!–~10! and the relations
(
m

@bm11~ t !22bm~ t !1bm21~ t !#bm~ t !52(
m

@bm11~ t !2bm~ t !#2,

^F~ t !u(
n

~Bn
†Bn111BnBn11

† !uF~ t !&5(
n

@wn* ~ t !wn11~ t !1wn11* ~ t !wn~ t !#S 11(
m

uwm~ t !u2D ,

^F~ t !u(
n

~un112un21!~Bn
†Bn!uF~ t !&5(

n
$@bn11~ t !2bn21~ t !#uwn~ t !u2%S 11(

m
uwm~ t !u2D ,

^F~ t !u(
n

~un112un!~Bn
†Bn111BnBn11

† !uF~ t !&5(
n

$@bn11~ t !2bn~ t !#@wn* ~ t !wn11~ t !1wn11* ~ t !wn~ t !#%

3S 11(
m

uwm~ t !u2D . ~21!
he

n
pa-
on,

A
lin-

e-
From Eqs.~16!–~19! we can obtain

i\
]

]t
wn~ t !5«0wn~ t !2J@wn11~ t !1wn21~ t !#1x1@bn11~ t !

2bn21~ t !#wn~ t !1x2@bn11~ t !2bn~ t !#

3@wn11~ t !1wn21~ t !#

1 5
2 S W~ t !2 1

2 (
m

@ḃm~ t !pm~ t !

2ṗm~ t !bm~ t !# Dwn~ t !. ~22!

In the continuum approximation we get from Eqs.~15!
and ~22!

i\
]

]t
w~x,t !5R~ t !w~x,t !2Jr0

2 ]2w~x,t !

]x2

2Gpuw~x,t !u2w~x,t ! ~23!

and

]b~x,t !

]z
5

]b~x,t !

]x
52

4~x11x2!

w~12S2!r 0
uw~x,t !u2, ~24!
where z5x2Vt, R(t)5«022J1 5
2 $W(t)

2 1
2 Sm@ḃm(t)pm(t)2ṗm(t)bm(t)#%, and S5V/V0 . The

soliton solution of Eq.~23! is thus

w~x,t !5S mP

2 D 1/2

sech@~mP /r 0!~x2x02Vt!#

3expH i F \V

2Jr0
2 ~x2x0!2Ev

t

\ G J ~25!

with

mP5
2~x11x2!2

w~12S2!J
, GP5

8~x11x2!2

w~12S2!
. ~26!

Although forms of the above equation of motion and t
corresponding solution, Eqs.~23!–~26!, are quite similar to
that of the Davydov soliton, the properties of our solito
have very large differences from the latter because the
rameter values in the equation of motion and the soluti
Eqs. ~23! and ~25!, including R(t), GP , andmP , have ob-
vious distinctions from that in the Davydov model.
straightforward result of our model is to increase the non
ear interaction energy GP „GP52GD@112(x2 /x1)
1(x2 /x1)2#… and the amplitude of the new soliton, and d
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crease its width due to an increase ofmP„mP52mD@1
12(x2 /x1)1(x2 /x1)2#… when compared with the Davydo
soliton, where mD5x1

2/w(12S2)J and GD54x1
2/w(1

2S2) are the corresponding values in the Davydov mod
Thus the localized feature of the new soliton is enhanc
therefore its stability against the quantum fluctuation a
thermal perturbations increased considerably as comp
with the Davydov soliton.

IV. THE PROPERTIES OF THE NEW SOLITON
AND REMARKS

The soliton energy in the improved model becomes

E5^F~ t !uHuF~ t !&5
1

r 0
E

2`

`

2FJr0
2S ]w~x,t !

]x D 2

1Ruw~x,t !u2

2Gpuw~x,t !u4Gdx1
1

r 0
È`

1
2 FM S ]b~x,t !

]t D 2

1wr0
2S ]b~x,t !

]x D 2Gdx5E01 1
2 M solV

2. ~27!

The rest energy of the new soliton is

E052~«022J!2
8~x11x2!4

3w2J
5Es

01W, ~28!

whereW5@2(x11x2)4#/3w2J is the energy of deformation
of the lattice. The effective mass of the new soliton is

M sol52mex1
8~x11x2!4~9S21223S4!

3w2J~12S2!3V0
2 . ~29!

We utilize Eqs.~4! and ~8!–~10! in the above calculations.
In such a case, the binding energy of the new soliton

EBP5
28~x11x2!4

3Jw2 . ~30!

TheEBP is larger than that of the Davydov soliton. The latt
is EBD52x1

4/3Jw2. They have the following relation:

EBP58EBDF114S x2

x1
D16S x2

x1
D 2

14S x2

x1
D 3

1S x2

x1
D 4G .

~31!

We can estimate that the binding energy of the new solito
about several decades larger than that of the Davydov
ton. This is a very interesting result. It is helpful to enhan
thermal stability of the new soliton. Obviously, the increa
of the binding energy of the new soliton comes from
two-quanta nature and the added interaction,S ix2(un11

2un)(Bn11
1 Bn1Bn

1Bn11), in the Hamiltonian of the sys
tems, Eq.~6!. However, we see from Eq.~31! that the former
plays the main role in the increase of the binding energy
l.
d,
d
ed

is
li-
e

d

the enhancement of thermal stability for the new soliton re
tive to the latter due tox2,x1 . The increase of the binding
energy results in significant changes of properties of the n
soliton, which are discussed as follows.

In comparing various correlations to this model, it is he
ful to consider them as a function of a composite coupl
parameter like that of Younget al. @29# and Scott@3# that can
be written as

4paP5~x11x2!2/2w\vD , ~32!

wherevD5(w/M )1/2 is the band edge for acoustic phono
~Debye frequency!. If 4paP@1, the coupling is said to be
strong, and if 4paP!1, it is said to be weak. Using widely
accepted values for the physical parameters for the alp
helix protein molecule@2–23#,

J51.55310222 J, w5~13– 19.5! N/m,

M5~1.17– 1.91!310225kg,
~33!

x1562310212N, x25~10– 18!310212 N,

r 054.5310210m,

we can estimate that the coupled constant lies in the reg
of 4paP50.11– 0.273, but 4paD50.036– 0.045 for the
Davydov model, which is a weakly coupled model@3#.
Therefore, the new model is not said to be a weakly coup
theory as compared with the Davydov model. Using ag
the notation of Venzel and Fischer@30#, Nagy @31#, and
Wagner and Kongeter@32#, it is convenient to define anothe
composite parameter@3#

g5J/2\wD . ~34!

In terms of the two composite parameters, 4paP andg,
the soliton binding energy for the new model can be writt
by

EBP /J58~4paP /g!2/3, M sol52mex@1132~4paP!2/3#.

~35!

From the above parameter values, we can obtaing
50.08. Utilizing these values, theEBP /J versus 4pa rela-
tions in Eq. ~35! are plotted in Fig. 1. However,EBD /J
5(4paD /g)2/3 for the Davydov model„here M sol8 5mex@1
12(4paD)2/3#, 4paD5x1

2/2w\vD…; then theEBD /J ver-
sus 4paD relation is also plotted in Fig. 1. From this figur
we see that the difference of the soliton binding energ
between two models becomes larger with increasing 4pa.

Also, we see clearly from Eqs.~24!–~28! and~31! that the
localized feature of our soliton is enhanced due to increa
of the nonlinear interaction and of the binding energy of t
new soliton resulting from the increases of exciton-phon
interaction in the improved model. Thus, the stability of t
soliton against quantum and thermal fluctuations is also



f

6996 PRE 62PANG XIAO-FENG
FIG. 1. The binding energy
(EB) of the solitons in our model
and the Davydov model in units o
dipole-dipole interaction energy
~J! vs the coupled constant, 4pa,
relations.
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ge
hanced considerably. As a matter of fact, the nonlinear in
action energy forming this soliton in the new model isGP

58(x11x2)2/(12S2)w53.8310221J, and it is larger than
the linear dispersion energy,J51.55310222J, i.e., the non-
linear interaction in this model is so large that it can actua
cancel or suppress the linear dispersion effect in the equa
of motion, thus the soliton is stable in such a case accord
to the soliton theory@2,33#. On the other hand, the nonlinea
interaction energy in the Davydov model is onlyGD

54x1
2/(12S2)w51.18310221J, and it is about three to

four times smaller thanGP . Therefore, the stability of the
Davydov soliton is weaker as compared with the new s
ton. Moreover, the binding energy of the new soliton in t
improved model isEBP5(4.16– 4.3)310221J in Eq. ~31!,
which is somewhat larger than the thermal perturbation
ergy, kBT54.13310221J, at 300 K and about four time
larger than the Debye energy,kBQ5\vD51.2310221J
~here vD is the Debye frequency!. This shows that transi
tions of the new soliton to a delocalized state can be s
pressed by the large energy difference between the in
~solitonic! state and final~delocalized! state, which is very
difficult to compensate for with the energy of the absorb
phonon. Thus, the new soliton is robust against quantum
thermal fluctuations, therefore it has a large lifetime a
good thermal stability in the region of biological temper
ture. In practice, according to Schweitzeret al.’s studies~i.e.,
the lifetime of the soliton increases asmP and T0

5\V0mP /KBp increase at a given temperature! @14# and the
above obtained results, we could roughly draw an infere
that the lifetime of the new soliton will increase considerab
as compared with that of the Davydov soliton due to
increases ofmP and T0 because the latter are about thr
times larger than that of the Davydov model. On the ot
hand, the binding energy of the Davydov solitonEBD

5x1
4/3w2J50.188310221J, and it is about 23 times smalle

than that of the new soliton, about 22 times smaller th
KBT, and about 6 times smaller thanKBQ, respectively.
Therefore, the Davydov soliton is easily destructed by
thermal perturbation energy and quantum transition effe
Thus we can naturally obtain that the Davydov soliton ha
very small lifetime, and it is unstable at the biological tem
r-

y
on
g

i-

-

p-
al

d
nd
d

e

e

r

n

e
s.
a
-

perature 300 K. This conclusion is consistent at a qualita
level with the results of Wanget al. @13# and Cottingham
et al. @14#.

However, we do not take into account the influence of
‘‘disorder’’ in the protein molecules on the stability of th
new soliton in the above studies. In practice, the influen
actually exists@11,23# because the proteins, strictly speakin
are not a particularly periodic system, and Careriet al.’s ex-
periments@34# appear to indicate that even relatively sm
amounts of disorder in amorphous film of acetanilide~ACN!,
a proteinlike crystal~i.e., the molecular structure of acetan
ide crystal is quite analogic with alpha-helix protein!, are
enough to destroy the spectral signature of a ‘‘soliton
Therefore, it is necessary to investigate the influences of
disorder effects on the stability of the new soliton in t
protein. However, this problem is very complicated, and
influences depend also on the concretely molecular struc
and the environment conditions of the protein. Therefore,
now discuss briefly this problem by numerical calculati
analogous to Fo¨rner’s method@11# on the basis of Eqs.~15!
and ~22!. Detailed studies on this problem will be discuss
in other papers.

We should point out here that an average mass ofM̄
5114mp5(1.17– 1.91)310225kg was used for each amin
acid residue in a given site in the above simulation and c
culation. However, a real protein molecule is an aperio
polymer where 20 different amino acid residues occur w
molecular weights between 75mp ~glycine! and 204mp ~tryp-
tophane!. This corresponds to a variation between 0.67M̄

and 1.80M̄ . However, in the improved model only sma
elongations perpendicular to the protein molecular backb
occur and therefore the influence of the disorder determi
by the different masses of the amino acid residues should
much smaller than suggested by the interval given (0.6M̄

<Mn<1.80M̄ ). To show the stability of the new soliton
against the disorder in the sequence of masses in a first s
of calculations, we have only increased the mass at site
All other masses have been kept equal toM̄ . Very surpris-
ingly, up to quite large masses of 110M̄ no obvious pertur-
bations and decays appear in the motion of the new soli
Meanwhile, the motion of the new soliton does not chan



d
n

si
te
ps
nc

of
to

a
a

a
e

he

e

ci

o
ll
th
fre
he
ei
n
c
a
c

ei
or

o

th
n

rc
ta
p

he
y
rc
-

i
th

7

e
ria

-
till

tric
for
es

only
her

ol-
ein
nd
the

rop-
orm
he
and
om-
d in
u-
ro-
le

in
rder
in

on
ters
due
w-
s of
l to
oli-

es.
the

le,
ling
ing
tum

ol-
uld
e a
ol-
g
nta,
tity

mo-
en-

tu-

PRE 62 6997IMPROVEMENT OF THE DAVYDOV THEORY OF . . .
much; a quite small fraction of the sound energy is trappe
the impurity and the major fraction is scattered back, a

these fractions do not increase up toM955950M̄ . From
these results one can conclude that an impurity at one
which may also be some other molecule bound to the pro
at this site~like reactive centers such as, e.g., heme grou!,
does not disturb the soliton at all, unless it does not influe
the coupling constants (x11x2) significantly.

On the other hand, we have also studied the influence
random series of masses for the whole chain on the soli
In this study, we introduced here a small parameterak which
can denote the mass at each point on the molecular ch
i.e., Mk5akM̄ , where theak were determined using
random-number generator with equal probability within
prescribed interval. The aperiodicity due to the smaller int
vals for ak , for example 0.67<ak<100, does not signifi-
cantly affect the stability of the new soliton. However, in t
case of the large intervals such as 0.67<ak<260, the vibra-
tional energy is dispersed. The interval over which the n
soliton moves unperturbed (0.67<ak<100) is evidently
larger than the variation of masses of the natural amino a
(0.67<ak<1.80).

However, the effective perturbation of the changes
mass on the new soliton that we study here is much sma
than the mass interval suggested. This is due to the fact
the amino acide residues in the protein do not move as
particles but are covalently bound in the direction of t
main chain, which is perpendicular to the direction of th
movement. Thus one can suppose that the effective influe
of the mass change in the side groups of the amino a
residues on the soliton should be much smaller than the
tual numbers of the masses suggested. Therefore, we
conclude that the aperiodicity or disorder of natural prot
molecules should not significantly affect the new soliton f
mation and stability. In the case of the mass variation
natural amino acid residues (0.67M̄,Mn,1.80M̄ ), virtu-
ally no change in the soliton dynamics is found. Thus,
average mass approximation used in the above calculatio
certainly justified.

We have also studied the influence of the change of fo
constantw arising from the disorder of structure on the s
bility of the new soliton by using numerical calculation. U
to a random variation of625% w̄, we find no change in the
dynamics of the new soliton. For635% w̄, the soliton ve-
locity is only somewhat diminished when compared with t
case ofw̄. Finally, for 645%w̄, the soliton disperses slowl
and the propagation is irregular. In the normal case of fo
constantw,30%w̄, virtually no change in the soliton sta
bility can be obtained. If in additionw is aperiodic, the soli-
ton is stable up to615% w̄, while at 25% w̄, a slowly
dispersive phenomenon of the new soliton occurs.

However, the soliton is more sensitive to the variations
J caused by the disorder of structure when compared with
other parameters, i.e., for variation inJ alone or together
with the natural mass change, the soliton is stable up to
J̄.

If ( x11x2) alone is aperiodic, which is caused by th
disorder of structure, together with the natural mass va
tion, the (x11x2) can be varied up to625% (x̄11x̄2) with-
out destruction of the soliton. However, if disorder inw̄ is
at
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also included, (x11x2) can only be varied up to620% and
w up to 632% w̄. Finally, if all four parameters are ran
domly varied, the maximal possible disorder that would s
occur in the new soliton motion is620% w̄, 63% J̄, 615%
(x̄11x̄2), and 0.67M̄<M<1.80M̄ .

In the case of diagonal disorderDe0 caused by different
amino acid side groups and corresponding local geome
distortions due to the imported impurities, we found that
an isolated impurity in the middle of the chain, which caus
the change of the energy to beDe0n5edn , the soliton can
pass the impurity only ife,0.6 meV. In other cases it is
reflected or dispersed. In the case of a random sequence
for e,1.05 meV, the soliton can pass the chain. For hig
values ofe, the excitation disperses.

However, the actual degree of disorder in protein m
ecules has been unknown up to now. It is known that prot
molecules are a bio-self-organization with high order a
coherent features. The order and coherent features of
protein are elementary properties of the protein. These p
erties are also necessary conditions for the protein to perf
its biological functions. Any large disorder appearing in t
biological protein means the degeneration of its structure
the disappearance of its biological functions. These phen
ena of the protein are not part of the problems discusse
this paper. Therefore, it is not realistic to discuss the infl
ences of large disorder of all physical parameters of the p
tein on the stability of the new soliton. It is also not possib
for large disorder to occur normally in biological prote
molecules such as the case of the small amounts of diso
of structure in amorphous films of acetanilide discovered
Careriet al.’s experiments@34#. Therefore, for protein mol-
ecules it is practical to study the influences of disorder
effective mass and small disorders of other parame
caused by small changes of geometry of the main chain
to the side groups on the stability of the new soliton. Ho
ever, the results obtained above show that the influence
such disorders on stability of the new soliton are too smal
destroy the soliton. Thus, we can conclude that the new s
ton with large binding energy is stable in protein molecul
It cannot be destroyed by general or small disorders of
physical parameters in biological protein molecules.

In other words, the new soliton could be thermal stab
because in the improved model increasing the coup
strength of the exciton-phonon interaction and the bind
energy of the soliton can suppress influences of the quan
and thermal perturbations in the biological protein m
ecules. Thus the new soliton is robust and its lifetime co
also be larger. Therefore, the improved model could b
likely candidate for bioenergy transport in the protein m
ecules. The resulting picture is very compelling in livin
systems since the new soliton with two quasicoherent qua
which has highly localized features, is a quasiclassical en
which can travel over a macroscopic distance along the
lecular chains, retaining wave shape, energy, and mom
tum.
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